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Scratch higher 
up my arm

I’m moving 
towards your 

left elbow

I’m moving a 
little closer to 

your elbow

Just a little bit 
more

Figure 1: Example interaction with BRIDGE. User is in a scratching scenario, where they command the robot to move to the
target scratching position (marked with star) through a bidirectional verbal interaction.

Abstract
Effective physical human-robot interaction requires systems that
are not only adaptable to user preferences but also transparent
about their actions. This paper introduces BRIDGE, a system for
bidirectional human-robot communication in physical assistance.
Our method allows users to modify a robot’s planned trajectory—
position, velocity, and force—in real time using natural language.
We utilize a large language model (LLM) to interpret any trajec-
tory modifications implied by user commands in the context of the
planned motion and conversation history. Importantly, our system
provides verbal feedback in response to the user, either assuring any
resulting changes or posing a clarifying question. We evaluated our
method in a user study with 18 older adults across three assistive
tasks, comparing BRIDGE to an ablation without verbal feedback
and a baseline. Results show that participants successfully used the
system to modify trajectories in real time. Moreover, the bidirec-
tional feedback led to significantly higher ratings of interactivity
and transparency, demonstrating that the robot’s verbal response
is critical for a more intuitive user experience. Videos and code can
be found on our project website: https://bidir-comm.github.io/

CCS Concepts
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matics; • Computer systems organization→ External inter-
faces for robotics.
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1 Introduction
A growing body of research has shown that robots can address a
range of caregiving activities in autonomous physical assistance [6,
9, 24]. However, many systems lack two capabilities essential for
interactive autonomy: real-time user-guided adaptation and trans-
parent communication. Real-time adaptation allows users to adjust
a robot’s ongoing autonomous motion—such as tuning speed or
pressure—to fit their own personal preferences and levels of com-
fort [8, 10, 12]. In parallel, clear communication of a robot’s intent
and state—such as any upcoming changes to its motions—supports
higher transparency and user trust towards the robot [1, 7, 23, 35].

In this paper, we propose BRIDGE, a system for Bidirectional
human-Robot assistive Interaction with Dialog GuidancE, address-
ing both real-time adaptation and transparency. BRIDGE allows
users to issue verbal commands to change a robot’s position, ve-
locity, and force in real time as the robot autonomously executes
a planned interaction for physical assistance. To establish bidirec-
tional communication, our system responds to every user utterance
with verbal feedback—either an assurance of the desired change
or a clarifying question—thereby closing the interaction loop (an
example shown in Figure 1).

We evaluate our system via a within-subjects user study with
older adults (𝑛 = 18) in three physically assistive tasks. Partici-
pants successfully modified the robot’s position, velocity, and force
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through speech in real time. Beyond this capability, BRIDGE’s ver-
bal feedback to user adjustments yields higher perceived interac-
tivity and transparency than a unidirectional ablation that allows
trajectory modifications but offers no feedback, underscoring the
importance of bidirectional communication.

In summary, our contributions in this paper are as follows:
• We propose a bidirectional human-robot communication frame-
work in physically assistive scenarios. This framework couples
a user’s trajectory commands with real-time, transparent verbal
feedback from the robot, fostering a more intuitive interaction.

• We present a novel LLM-based pipeline that efficiently inter-
prets user utterances in trajectory and conversation context.
The pipeline simultaneously generates modifications to the tra-
jectory’s position, velocity, or force and verbal feedback through
concise assurances or clarifying questions.

• We conduct a user study with 18 older adults and three physi-
cally assistive tasks, which demonstrates that bidirectional com-
munication leads to higher perceived interactivity and trans-
parency than a unidirectional ablation, while speech-basedmod-
ifications remain fast enough for real-time applications.

2 Related Works
2.1 Language-guided robot motions in HRI
The concept of influencing a robot’s action through language inputs
has been widely explored in different contexts, predominantly in
the field of robotic manipulation. Language is often integrated in
learning reward functions [18, 30, 36], selecting motion primitives
on a high level [31, 38], computing latent actions [5, 13], or training
general language-guided policies [20] and vision-language-action
models (VLA) [11, 16]. In comparison, our method leverages the
zero-shot reasoning capabilities of a general-purpose LLM. We
focus on the assistive domain and utilize an LLM for real-time
interpretation of utterances into trajectory modifications, without
task-specific training or fine-tuning.

In physically assistive robotics, language is commonly used for
issuing task-level commands, such as initiating motions in feeding
assistance [4, 25] or selection of predefined motion primitives [3].
Other use cases mostly revolve around commanding a robot arm for
assistive object retrieval [26, 28]. These systems are often confined
to one particular assistive task, whereas our developed system can
be applied to a range of physically assistive trajectories. We also
make modifications to trajectories on a parameter level, directly
changing all motion aspects of position, velocity, and force, without
being limited to configured actions.

2.2 Human-robot dialog systems
While the previous section mainly focuses on voice interfaces being
used only in the human-to-robot direction, many prior works also
explore dialog systems between humans and robots, similar to our
system. Speech serves as one of the most intuitive interfaces that
can grant both personalization and transparency, especially for
older adults and assistive scenarios [21, 27, 32].

Socially assistive robots often make use of conversations in the
contexts of therapy or affective support [19, 29, 33], while these
applications generally do not involve physical interactions, which
is the emphasis of our work.

Dialog can also play an important role in the domain of human-
robot collaboration [2, 22, 34, 37], and the information exchanged
often revolves around task assignment, hence which party (human
or robot) should be assigned with which step in a task. In contrast,
we address the domain of assistive robotics, where humans can
provide their preferences verbally when robots autonomously pro-
vide physical assistance. Additionally, we focus on assistive tasks
that can be completed even with only human commands and no
robot verbal feedback, and in this work, we look into the effect
of providing such verbal feedback to humans—hence how bidirec-
tional communication influences an interaction that may also be
completed with unidirectional human-to-robot communication.

3 Methods
Our framework takes as input (1) a planned physically assistive
trajectory and (2) a user utterance, and produces real-time modi-
fications to that trajectory based on the utterance. As outlined in
Figure 2, the system either applies and communicates trajectory
changes when the utterance directly implies so, or poses a clar-
ifying question seeking for more user input. In this section, we
first introduce compact representations for trajectories (§3.1) and
modifications to trajectories (§3.2), then discuss the LLM-based in-
terpreter that maps an utterance to the correct modification along
with a concise communication as feedback (§3.3).

3.1 Trajectory representation
3.1.1 Assumptions. We assume we are provided with a planned
end-effector trajectory, as a sequence of 3D waypoints:

𝜏 = {𝑤𝑖 : 𝑤𝑖 = (𝑡𝑖 , x𝑖 , 𝑣𝑖 , 𝑓𝑖 )}𝑁𝑖=1, (1)

where each waypoint 𝑤𝑖 consists of a timestamp 𝑡𝑖 ∈ R≥0, end-
effector position x𝑖 ∈ R3, velocity magnitude 𝑣𝑖 ∈ R≥0, and desired
force magnitude 𝑓𝑖 ∈ R≥0. Between consecutive waypoints, the ro-
bot end-effector is assumed to follow a straight-line Cartesian path,
with velocity and force linearly interpolated in time. Force mag-
nitudes 𝑓𝑖 are intended for assistive contact with the user and are
tracked by a low-level controller implementing either impedance
or admittance control. We assume the planned trajectory interacts
with a person, hence approaching certain relevant human body
landmarks (major body joints such as wrists, elbows, and shoul-
ders). We further assume access to estimated 3D positions of these
landmarks, which could be obtained from body pose estimation.

Trajectory

clear

unclear

Traj. Mod.

New Traj.

User 
Utterance

Response

BRIDGE: 
Bidirectional 

Communication 
System

Verbal 
Assurance

Clarifying 
Question

Figure 2: Flowchart of BRIDGE: our bidirectional commu-
nication system, including two cases of verbal feedback de-
pending on whether a user utterance is clear: (1) assuring and
executing any modifications to the trajectory, or (2) posing a
clarification question to request for further user input.



Bidirectional Human-Robot Communication HRI ’26, March 16–19, 2026, Edinburgh, Scotland, UK

Move faster

That was a bit

too hard

Go slower near

my arm

Move a lot higher

up my arm

This doesn’t feel

very good

B
R

ID
G

E
 

waypoint 1:

  nearest landmark: none

waypoint 2:

  nearest landmark: left wrist...


I’m moving twice

as fast

global:

  velocity: 2.0

Traj. in YAML

1

5

4

2

3

YAML trajectory 
modifications

Verbal 
feedback

Ex
am

pl
e 

us
er

 u
tt

er
an

ce
s

global:

  force: 1/1.5

I’m reducing the pressure 
slightly

left elbow:

  attract: 3.0

I’m moving much closer 
to your left elbow

global:

  clarification: true

Can you clarify what 
you’d like me to change?

left wrist:

  velocity: 1/2.0

left elbow:

  velocity: 1/2.0

I’m moving at half the 
speed around your left 

wrist and left elbow

Figure 3: Example YAML trajectory and user utterances as
inputs to BRIDGE, alongwith the generated communications
and trajectory modifications in YAML format.

3.1.2 Trajectory representation. We build a minimal representation
of the input trajectory 𝜏 that gives the LLM a high-level sketch of
the planned interaction. Since the trajectory interacts with a person,
we compute the nearest human-body landmark for each waypoint
and use only this label to form a symbolic representation, with-
out involving kinematic details. This representation is serialized in
YAML format for structure (see top-left of Figure 3 for a snippet
example). If no landmark falls within a proximity threshold, the
label is left unassigned (None in the YAML), which has no geometric
implication. Such a representation supports high-level identifica-
tion of where interactions occur and also provides coarse physical
grounding for utterance interpretation, as we discuss in §3.3.2.

3.2 Modification representation
We support trajectory modifications in position, velocity, and force,
and we organize them at three scopes: global changes that apply to
the entire trajectory (§3.2.1), landmark changes whose influence is
defined with respect to specific body landmarks (§3.2.2), and way-
point changes that affect certain waypoints (§3.2.3). These scopes
do not imply priority, so if a single utterance specifies changes
in multiple scopes, we apply them concurrently to the trajectory.
Across utterances, changes accumulate, with velocity clamped to
a fixed cap (see implementation details in §4.1). We serialize these
trajectory modifications also in YAML schema.

3.2.1 Global Changes. We support changes to the velocity and
force of the entire trajectory, applied uniformly to all waypoints.
These changes correspond to broad user utterances such as “Move
faster.” We apply these changes in a multiplicative manner, with the
scaling factor represented in the corresponding YAML fields (see
examples 1 and 2 in Figure 3). Thus, a value greater than 1 indicates
an increase, and a value between 0 and 1 indicates a decrease.

3.2.2 Landmark Changes. BRIDGE also allows users to modify
kinematic parameters relative to body landmarks. These changes
fall into two main categories: (1) velocity and force changes around
body landmarks, expressed in utterances such as “Go slower near
my arm” (see example 3 in Figure 3), and (2) position changes
based on attraction to/repulsion from body landmarks, expressed in
utterances such as “Move up a lot higher on my arm” (see example
4 in Figure 3). We next elaborate on each of these categories.

Local velocity and force changes. These changes are repre-
sented in YAML similarly to global changes, but their effect on each
waypoint is subject to Gaussian decay based on the waypoint’s
distance from the local landmark. For example, suppose a landmark
located at plandmark ∈ R3 has a velocity YAML field of 𝑘 > 1, then
waypoint𝑤 ’s velocity 𝑣 should be increased by a factor of:

1 + (𝑘 − 1) exp
(
−∥plandmark − x∥2

2𝜎2

)
(2)

where 𝜎 controls the spread—a larger 𝜎 results in wider influence
around the landmark, while a smaller 𝜎 leads to a more localized
effect. We adopted the Gaussian decay model since this creates a
decaying influence naturally implied by phrases like “around my
wrist.” We set 𝜎 = 0.07m, as empirical pilot testing shows this value
creates a localized and smoothly-decaying effect. The Gaussian
decay for a decrease in velocity or force is expressed similarly.

Position changes. In order to modify the position of individual
waypoints in the input trajectory, we apply the notion of artificial
potential fields [15], commonly used in robotics for manipulation
and navigation with obstacle avoidance. Attractive and repulsive
potentials can therefore be placed at body landmarks, and we com-
pute how much to displace a waypoint 𝑤 from the gradients of
all potential functions, evaluated at the waypoint’s position x. We
specify both attractive and repulsive potentials, as well as the in-
tensity of each, via the attract field in the YAML entry for each
landmark (see example 4 in Figure 3). Following the convention of
multiplicative factors for velocity and force, a value greater than
1 indicates an attractive potential, and a value between 0 and 1
indicates a repulsive potential. For attractive potentials, we use the
standard quadratic formulation. Suppose we have an attract field
of 𝑘 > 1 for a landmark located at plandmark:

𝑈att (x) =
𝑘

2
𝑘𝑝 ∥plandmark − x∥2 (3)

The gain 𝑘𝑝 is empirically determined to be 0.01m−2. Our applica-
tion differs from most manipulation and navigation scenarios in
that there could be multiple attractive potentials (e.g. attraction to
the forearm overall is represented as attractions to the elbow and
the wrist) as opposed to a single goal. In order to ensure conver-
gence and avoid waypoints already close to an attractive potential
being pulled towards another goal, we weight each attractive poten-
tial by the inverse of its distance to the point of interest. The total
attractive displacement for a waypoint located at x is therefore:

Δatt (x) = −
∑︁
𝑗

𝑤 𝑗∑
𝑘 𝑤𝑘

∇𝑈att, 𝑗 (x), 𝑤 𝑗 =
1

∥plandmark, 𝑗 − x∥ (4)

For repulsive potentials, we use the formulation with a limit dis-
tance of effect 𝜌0. Suppose a landmark at plandmark has 𝑘 ∈ (0, 1):

𝑈rep (x) =


𝜂

2𝑘

(
1

∥plandmark−x∥ −
1
𝜌0

)2
if ∥plandmark − x∥ ≤ 𝜌0

0 if ∥plandmark − x∥ > 𝜌0
(5)

The gain 𝜂 and the distance of effect 𝜌0 are empirically determined
to be 0.5m2 and 0.1m, respectively. Therefore, assuming presence
of multiple attractive and repulsive potentials, the net displacement
of the position x of a waypoint 𝑤 is computed as a single step in
the opposite direction of the potential field gradients:

Δ(x) = Δatt (x) −
∑︁

∇𝑈rep (x) (6)
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Note that this displacement is only applied once to each waypoint,
unlike the classical, iterative application of potential fields.

3.2.3 Waypoint Changes. Lastly, our system also supports changes
to the velocity and force of individual waypoints. This capability is
useful for handling utterances such as “Go faster when you move
away from me,” which may target sections of the trajectory far
away from any specific body landmark. To execute this change, the
system identifies the waypoints implied by the utterance through
referencing the trajectory YAML and applies the change uniformly
to each one. Changes to any one waypoint does not directly affect
its neighboring waypoints. Although the uniform application is
similar to global changes, waypoint changes require generating a
separate YAML entry for every modified waypoint.

3.3 Interpretation of User Utterances
We design a structured LLM prompt that translates user utterances
and YAML trajectories into trajectory modifications in YAML, ac-
companied by a brief sentence communicating back to the user.
In this section, we first discuss some features that allow BRIDGE
to adapt to various levels of desired change (§3.3.1), as well as
interpreting utterances in context of both the trajectory and the
conversation history (§3.3.2). Next, we focus on the generation of
robot verbal feedback, which forms the concept of bidirectional
communication (§3.3.3). Lastly, we provide some rationale and de-
sign choices regarding the compactness of LLM outputs (§3.3.4). The
complete prompt used in BRIDGE can be found in the Appendix.

3.3.1 Granularity. The prompt is designed to handle both generic
and fine-grained adjustments to the motion aspects of position,
velocity, and force. For a generic adjustment without specifying
further granularity (e.g. “Go slower”), we configure the change
magnitude 𝑘 to a default factor of 2 (𝑘 = 2 for increases and 𝑘 = 0.5
for decreases), as we find this to be an empirically distinguishable
magnitude for typical assistive trajectories. When the user desires
more fine-grained control, (e.g. “Go slightly slower” and “Press
much harder”), the prompt provides examples that allow the LLM
to reason about the implied magnitude from the utterance; see
examples 2 and 4 in Figure 3 for sample utterances and their cor-
responding YAML modifications. Finally, we bound the maximum
change magnitude to a factor of 3 to avoid drastic changes.

3.3.2 Context-aware Utterance Interpretation. To create a fluid and
intuitive interaction, the prompt contains two sources of context—
planned trajectory and conversation history—enabling the LLM
to interpret ambiguous commands without requiring excessive
specificity from the user.

Trajectory context. The prompt’s trajectory context is pro-
vided via the YAML representation introduced in §3.1, which spec-
ifies the nearest body landmark for each waypoint. This context
allows the LLM to resolve spatial ambiguities. For instance, a user
does not need to specify whether they mean their “left” or “right”
elbow, as this information can be inferred from the planned motion.
Trajectory context also enables correct understanding of high-level
references, like a command relating to an entire “arm.” Even though
“arm” is not a specific body joint, the LLM can use trajectory infor-
mation to deduce which landmarks (e.g., shoulder, elbow, wrist) are
relevant to the user’s command (see examples 3 and 4 in Figure 3).

Conversation context. The prompt also incorporates context
from conversation history, specifically the most recent verbal ex-
change (user utterance, YAML trajectory changes, and robot verbal
feedback). This context allows the LLM to correctly interpret follow-
up commands. For example, the user may say “Go faster” and a
subsequent command of “A little bit more.” While vague in isolation,
this second utterance can be correctly interpreted by the LLM as
another, smaller velocity increase. Retaining conversation history
also enables reversing changes with utterances such as “Undo that”
or “Forget what I just said.” This conversational memory allows
users to make iterative refinements naturally, as shown in Figure 1.

3.3.3 Bidirectional Communication. Bidirectional communication,
a key feature of BRIDGE, is achieved by providing verbal feedback
for each user utterance. We expect that the format of dialog in
general, regardless of the exact content, will enhance the perception
of interactivity, which is important for physically assistive scenarios.
Specifically, BRIDGE provides two different types of feedback to
handle different utterances: offering assurance for any utterances
that imply changes to the robot’s trajectory, or proactively asking
a clarifying question when the meaning of an utterance is unclear.
The aim of both types of feedback is to fully communicate the
robot’s internal state to the user to support mutual understanding.

Assurance for change-making utterances. When a desired
modification can be extracted from a user utterance, the LLM also
generates one concise sentence to assure the user of the upcom-
ing motion modification (see examples 1–4 in Figure 3). These
assurances are generated without involving technical details, only
communicating themagnitude of change when it is easy to interpret
from a user perspective (see examples 1 and 3 in Figure 3).

Clarifying questions for unclear utterances. When an ut-
terance is ambiguous or does not map to an adjustable parameter,
even considering trajectory and conversational context, BRIDGE
seeks clarification from the user. Such utterances could be a general
expression of feeling (e.g., “This doesn’t feel good”), or it could come
from incorrect speech detections, which are common in real-world
environments. In these cases, the system makes no modification
to the trajectory and instead produces a clarifying question to ask
for more information. These questions are deliberately kept open,
rather than suggesting specific options, to ensure that users retain
control over expressing adjustments. Upon the user’s response, a
second-stage prompt is then constructed to query the LLM for a
new YAML block based on the user’s clarification. This prompt
is designed to be much more concise than the main prompt and
contains only the immediate context of the question and answer,
to facilitate minimal response latency from the LLM. This process
of posing clarifying questions is iterative, until the user’s intent is
no longer ambiguous (as shown in Figure 2). We use a flag in the
YAML representation of trajectory modification to indicate whether
further clarification is required (see example 5 in Figure 3). These
clarifying questions are phrased in plain conversational language,
hence easy for users to interpret and act on.

3.3.4 Compactness of Response. Because LLMs generate responses
autoregressively—one token at a time—the total response latency
is directly influenced by the number of output tokens. To minimize
latency and maximize response speed, we design the prompt to
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Lighter 
pressure near 

my elbow

I’m reducing the 
pressure to half 

around your elbow

(3)

Go faster 
please

I’m moving 
twice as fast

(2)

Scratch closer to 
my elbow

I’m moving 
closer to your 

left elbow

(1)

Figure 4: Snapshots from all three tasks implemented for the user study ((1) scratching, (2) feeding, and (3) bathing), with
example user utterances (orange) and verbal responses from the robot (yellow) generated by BRIDGE.

require the shortest possible response. Specifically, the output is re-
stricted to only the YAML fields that contain modifications (change
magnitude 𝑘 ≠ 1). Utterances unrelated to trajectory edits (e.g.,
“I’m happy today”) are also ignored entirely. Most importantly, we
prioritize landmark changes over waypoint changes. A command
like “Move faster near my wrist” could be represented by modifying
a list of individual waypoints, but this would result in a verbose
output with separate entries for each waypoint. Instead, we pri-
oritize using a landmark change, which not only provides a more
compact representation but also offers the smoother exponential
decay described in §3.2.2. Collectively, these measures ensure the
LLM’s output is concise, minimizing latency and creating a more
interactive experience.

4 User Study
We conducted a within-subjects user study to evaluate BRIDGE’s
efficacy for real-time trajectory modification and to measure the
specific contribution of bidirectional verbal feedback. Specifically,
we test the following two hypotheses:

H1 (Efficacy) – Users will be able to use BRIDGE to effectively
modify the position, velocity, and force of planned trajectories for
different physically assistive tasks.

H2 (Contribution of Bidirectional Feedback) – Bidirectional
verbal feedback from the robot will facilitate a more interactive
and transparent experience for users, compared to a no-feedback
method with the same ability to make trajectory changes.

4.1 Tasks and Implementation
We designed three different assistive tasks, where each task focuses
on a different aspect of the motion (position, velocity, or force)
for the user to make modifications to. All tasks were performed
autonomously with a Stretch 3 robot, a mobile manipulator with a
5-DoF arm and a gripper.

(1) Scratching (position): The robot held a 3D-printed scratching
tool and began scratching near the participant’s left wrist.
Participants were given the goal of modifying the position
of scratching to an area on the upper forearm, indicated by
stickers placed on the participant’s arm.

(2) Feeding (velocity): The robot held a spoon and scooped from
a bowl of applesauce to feed the participant a total of three

times. Participants were given the goal of modifying the ve-
locity of feeding to a level they were comfortable with. To
encourage participants to actively adjust speed, the initial
motion was intentionally designed with a slow velocity.

(3) Bathing (force): The robot held a piece of dry washcloth
and wiped the participant’s left forearm from the wrist to the
elbow, a total of four times. Participants were given the goal
of modifying the force of bathing to their liking. Given the
subjective nature of force preference, the primary purpose of
this task was to ensure participants felt empowered to make
adjustments, rather than to converge on a specific target force.

Figure 4 shows one snapshot from each task during the user study,
along with sample user utterances and the corresponding response
from the robot. Despite each task focusing on one motion aspect,
participants were welcomed to change more than one aspect in
each task, or even in the same utterance. We used Microsoft Azure’s
speech-to-text service to transcribe user speech. Once the user fin-
ished speaking, the service sent the complete utterance to the robot,
which then paused its motion and queried the LLM (GPT-4.1) to gen-
erate desired modifications. The query would take approximately
1-2 seconds, an interval kept short by our compact YAML represen-
tation. When the query finished, the robot updated its trajectory
and then restarted its motion along the new trajectory.

Multiple utterances in the same interaction were treated as cu-
mulative, so e.g. the second utterance would act on the modified
trajectory from the first utterance. The maximum velocity of the
robot end-effector was bound to 0.1m/s for safety.

4.2 Participants and Setting
We recruited 𝑛 = 18 older adults from a local independent living
community (7 male/11 female; age range 74–90 with𝑀 = 82.1 and
𝑆𝐷 = 4.4). Only two participants reported any experience with
autonomous robots in general (levels 2 and 3 on a 5-point scale; all
other participants reported no experience).

The study was conducted in an empty apartment within the
community, with all tasks completed in a single session. The study
design, the experiment protocol, and the consent forms received
approval from our Institutional Review Board.
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Figure 5: Box plots showing the distribution of survey responses across all participants and tasks. After fitting ordinal mixed-
effects models to each question, we conduct Wald tests to assess pairwise differences between BRIDGE and both the no
communication baseline and the unidirectional communication ablation. “ns” denote lack of significant difference, and
asterisks denote significance levels (𝑝 < 0.05, 𝑝 < 0.01, 𝑝 < 0.001, 𝑝 < 0.0001).

4.3 Communication Strategies and Procedure
To test our hypotheses, we designed three communication strategies
that participants experienced in a within-subjects manner:

• BRIDGE: This is our full proposed bidirectional communication
system. The robot would modify its trajectory according to the
user’s verbal command and provide verbal feedback in the form
of either an assurance or a clarifying question.

• Unidirectional communication (Ablation): This strategy is
designed to isolate the effect of the robot’s verbal feedback. The
robot can still modify its trajectory based on user commands,
but it provides no verbal assurance or clarifying questions. If
an utterance is unclear, the robot would simply pause and then
resume its previous motion without change.

• No-modification strategy (Baseline): In this strategy, the ro-
bot would still listen for user speech and pause its motion, but
it would not make any modifications to its trajectory. After the
standard pause, it would always resume its original, unmodi-
fied path. This baseline is designed to measure the efficacy of
trajectory changes in our method and the ablation.

Each participant completed nine interactions with the robot.
Each interaction (trial) consisted of performing one of the three
assistive tasks (scratching, feeding, or bathing) with one of the three
communication strategies above. A participant would complete all
three trials for a single task—hence experiencing all communication
strategies for the task—before proceeding to the next task. To miti-
gate ordering effects, we counterbalanced the sequence in which
the three tasks were presented to each participant, as well as the
order of the three communication strategies within each task.

4.4 Measures
After each trial, the participants were asked to answer a survey
with the following Likert items on a 7-point scale (7 for strongly
agree, 1 for strongly disagree):

L1. (Enjoyment) I enjoyed the interaction.

L2. (Perceived Interactivity) The robot felt interactive and respon-
sive.

L3. (Grounding) I was confident the robot understoodwhat I meant.
L4. (Transparency) I could tell exactly what changed in the robot’s

motion after my input.
L5. (Perceived Control) I felt in control of the robot’s motions.
L6. (Task success) At the end of the trial, I was able to achieve the

overall task objective.

The italicized terms inside parentheses denote the high-level con-
cepts each item was designed to evaluate and were not shown to
the participants.

We also logged the following data for quantitative analysis: the
content of each user utterance, the LLM’s full response (YAML
and verbal feedback) and processing latency (i.e., the motion pause
duration), and the interaction timestamp for each utterance.

5 Results and Discussion
Figure 5 shows the distribution of all participants’ responses to the
Likert-item questions. We fit ordinal mixed-effects (proportional-
odds) models with random intercepts for participant, task, and their
interaction effects. Communication strategy was held as a fixed
effect. Omnibus effects were assessed with a likelihood-ratio test.
Pairwise differences between our method and the baseline or the
ablation were evaluated with Wald tests from the fitted model, with
Holm adjustment for multiple comparisons.

Figure 6 provides objective evidence for our efficacy hypothesis
(H1), illustrating how users successfullymodified the robot’s motion
to achieve the task goals. As per our task design, we visualize the
two tasks that were designed with clear, objective targets. The plots
show the robot’s state over the normalized task progression: the
top plot shows the robot’s proximity to the target position for the
scratching task, while the bottom plot shows the robot’s velocity
for the feeding task, both averaged across all participants. We do
not visualize the results for the bathing task since controlling the
force is guided by subjective preference rather than a desired target.
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Figure 6: Efficacy of trajectory modifications, averaged over
all participants. The plots show changes in position for the
scratching task (top) and velocity for the feeding task (bot-
tom) over normalized task progression. They compare the
communication strategies that allow modifications (BRIDGE
and the unidirectional ablation, solid lines) against the no-
modification baseline (dotted line). The snapshots on the
right visualize the difference in robot state, comparing a trial
with modifications to one without at a representative point
in the interaction.

In the visualized tasks, the successful modifications are evident in
the clear divergence of the trajectories for the modifiable strategies
(BRIDGE and the unidirectional ablation, solid lines) compared to
the static, preplanned path of the no-modification baseline (dotted
line). Variations in the baseline reflect the designed dynamics of the
original trajectory. To complement the plotted data, the snapshots
on the right of Figure 6 visualize the effect of user commands, where
colored stars and arrows (red for without modification, green for
with modification) visually depict the difference in robot state at a
representative point in the interaction.

5.1 Modification Efficacy
As shown in the top plot for scratching in Figure 6, users were
able to command the robot to scratch at the target location un-
der the bidirectional and unidirectional strategies (as proximity
goes towards zero). In contrast, under the no-modification baseline,
the robot’s motion was unaffected by user commands and simply
followed its original, pre-planned trajectory. The accompanying
snapshots on the top-right of Figure 6 provide a visual confirmation,
showing the robot successfully reaching the target area (marked

with star) in trial with modifications. Similarly, the bottom plot
for feeding in Figure 6 shows that users were able to command
substantial increases in the robot’s speed under the bidirectional
and unidirectional strategies, increasing it by a factor of three to
four compared to the cautious initial trajectory. In contrast, the
velocity profile in the baseline method remained unchanged and
followed the preplanned trajectory. This demonstrates the effective-
ness of our underlying speech-to-modification system for changing
different aspects of a robot’s trajectory.

To complement the objective data, we analyzed participants’ rat-
ings of efficacy to the Likert items as shown in Figure 5. Participants
reported a high degree of task success (L6) and perceived control
(L5) when using BRIDGE or the unidirectional ablation. Statistical
tests revealed that both strategies were rated significantly higher
than the baseline for both L6 (𝑝 < 0.0001) and L5 (𝑝 < 0.0001).
Importantly, the high task success ratings hold across all three
tasks, confirming the effectiveness of our method for modifying
the intended aspect of each task: position for scratching, velocity
for feeding, and force for bathing (see Figure 7).

Moreover, there was no significant difference in task success or
perceived control between our bidirectional method and the unidi-
rectional ablation. This finding confirms that both strategies were
equally effective at achieving task goals of modifying trajectories,
which carries the crucial implication that any differences observed
in other subjective ratings (discussed in §5.2) can be attributed
directly to the presence of the robot’s verbal feedback.

Finally, the system’s efficiency was confirmed by its low latency.
The average time from a user finishing an utterance to the robot
executing the modification was measured to be 1.7 s across all trials
with modifications, which consists of 1.3 s for the LLM query and
0.4 s for themotion planner. This rapid response time directly results
from our emphasis on compact representations in LLM outputs and
confirms the viability of our system for real-time interaction.

In summary, these three sources of evidence—the objective suc-
cess in modifying trajectories, the high ratings of task success and
user perceived control, and the low system latency—collectively
support our efficacy hypothesis (H1). The results confirm that our
system is effective at performing real-time trajectory modifications.

5.2 User Perception and Feedback
To test H2, we analyzed the participants’ perception of their interac-
tions as reported in survey ratings (shown in Figure 5). BRIDGEwas
rated significantly higher than the no-modification baseline across
all measures (𝑝 < 0.0001). More importantly, when compared to
the unidirectional ablation, BRIDGE was perceived as significantly
more interactive (L2, 𝑝 < 0.001). Participants also expressed higher
confidence that the robot understood them (L3, 𝑝 < 0.05) and found
it easier to discern changes in the robot’s motion (L4, 𝑝 < 0.05).

This quantitative preference is supported by qualitative feedback
gathered in post-study debriefings. When asked which communi-
cation strategy they preferred, all participants selected the bidirec-
tional communication by BRIDGE and provided insight into the
two types of verbal responses: assurances and clarifying questions.

Verbal assurances elicited varied preferences among the partici-
pants. Many appreciated its value: P15 noting that with assurances,
“you know the robot has interpreted what you want.” P18 felt that
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Figure 7: Box plot showing the distribution of survey re-
sponses for perceived task success (L6), separate for each
task. “ns” denote lack of significant difference, and asterisks
denote significance levels (∗∗∗∗means 𝑝 < 0.0001).

assurances made them “prepared for what’s going to happen.” How-
ever, some participants took a more indifferent stance: P5 said “It
doesn’t matter” whether the assurances were communicated, and
P8 stated that “[the robot] didn’t need to repeat to [them] what
it’s going to do.” P13 offered the nuance that while “reassuring”
initially, assurances could become “annoying” in long-term use.

In contrast, participants were universally positive about themerit
of clarifying questions. P5 said “If [the robot] doesn’t understand,
then [they] want to know,” and P15 noted that without clarifying
questions, they “don’t know if [they] said something that the robot
wasn’t understanding.” P13 stated that clarifying questions provide
a method for them to “learn from [the robot].” Throughout the user
study, BRIDGE generated a clarifying question in response to 17%
of all user utterances, demonstrating its role as a key mechanism
for resolving ambiguity.

Overall, this varied reception to different types of feedback sug-
gests an opportunity for personalization, such as tuning the fre-
quency or verbosity of verbal feedback to user preference and
adapting over time with familiarity.

In summary, through both the survey analysis and qualitative
feedback, results show that BRIDGEwas strongly preferred over the
unidirectional ablation, fostering amore interactive and transparent
experience, hence supporting H2.

5.3 Perceptual Bias and the Need for
Transparency

An interesting finding emerged when we analyzed the perceived
task success (L6) in a per-task manner, as shown in Figure 7. The
data reveals a stark contrast between tasks with objective versus
subjective goals.

The scratching task had a clear, objective target, and participants
correctly identified the baseline’s failure to react to their inputs, rat-
ing its success very low (upper quartile of 2). This was significantly
different from our method, which was rated very successful.

However, for the bathing task, where the “correct” force is subjec-
tive, participants reported a high degree of success (lower quartile
of 5) even for the baseline method, with no statistically significant

difference from our method. Such ratings suggest a powerful per-
ceptual bias: when a change is difficult to perceive and driven by
user command, participants tend to believe their command was
successful, even when the robot’s behavior remained the same.
This interpretation is supported by qualitative feedback, where
participants claimed they perceived commanded force changes, and
sometimes velocity changes in the feeding task too, even when
experiencing the baseline method. Our observation finds psycho-
logical grounding in research on causal attribution [14] and the
illusion of control [17], where people may infer causal relationship
between their own action and a temporally subsequent event.

This finding underscores the importance of transparency in phys-
ical human-robot interactions. When a user’s perception can di-
verge from the robot’s actual behavior, the liability is on the robot
to provide clear and transparent feedback. Without such grounding,
the user may develop an inaccurate mental model of the system’s
capabilities, leading to frustration and mistrust in the long run.

This result further justifies the need for clarifying questions
as well. Between BRIDGE and the unidirectional ablation, a major
functional difference is that utterances that trigger a clarifying ques-
tion in BRIDGE will not change the robot’s motion in the ablation.
Despite the two both having high perceived success, the ablation
places the burden on users to notice and correct errors—especially
difficult given the perceptual bias we observe. With clarifying ques-
tions, such uncertainty surfaces immediately, and users enjoy a
more intuitive experience, as reflected by qualitative comments.

6 Conclusion
We present BRIDGE, a framework for bidirectional human-robot
communication during physically assistive scenarios, where users
can verbally modify a robot’s trajectory in real time across the mo-
tion aspects of position, velocity, and force. Our method leverages
an LLM to efficiently translate any user utterance into compactly
represented trajectory modifications while simultaneously gen-
erating appropriate verbal feedback—either as an assurance of a
desired change or as a clarifying question. A user study with 18
older adults demonstrates the efficacy of our method for trajec-
tory modifications and proves the need for the robot’s bidirectional
verbal feedback, which significantly enhances user experience by
improving perceived interactivity and transparency.

Future work. Our work has a few limitations that could open
avenues for future research. First, our user study only involved a
single session per participant, so how to appropriately structure
bidirectional verbal response in a long term deployment scenario
remains unexplored. Additionally, our system can modify a range
of physically assistive planned trajectories assuming the user stays
stationary, but how to effectively adapt BRIDGE to real-time policies
or general manipulation settings remain open questions. Moreover,
testing BRIDGE on more dynamic tasks and scenarios may offer
additional insight into the value of each component of our system.
Lastly, spoken language may not be the most intuitive form of
communication at all times, and other methods of communication
(e.g. tactile, gestures) could be considered as well.
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A Full LLM Prompt
Most of the LLM prompt we used is fixed, but there are sections
towards the end that we dynamically populate based on the tra-
jectory, user utterance, as well as conversation history. We first
present the fixed content in the prompt, where we mark the areas
to be dynamically populated with bold italicized font, and we give
some examples for those dynamic contents afterwards.

A.1 Fixed content
You are a robot with a planned trajectory defined by a sequence of
waypoints to move to for interacting with what you see around you.
Each waypoint specifies the position, velocity, and force (pressure)
of your gripper that interacts with a person. You will be given:
- A YAML dictionary of local waypoints with their nearest body
landmark.
- A list of all body landmarks that you detected.
- The most recent sequence of user utterances and your own prior
YAML responses, if they exist.
- The user’s current utterance made while you are moving.

Based on the user’s current utterance, you should output a YAML
block in the below format

yaml
waypoint [x]:

force: [multiplier]
velocity: [multiplier]

...
global:

clarification: true | false
force:[multiplier]
stop: true | false
velocity: [multiplier]

[body landmark]:
attract: [multiplier]
force: [multiplier]
velocity: [multiplier]

...

Where:
- Each numeric field represents a multiplier relative to the current
value:

- All values are always > 0
- Values greater than 1.0 mean the person wants that quantity to

increase (e.g., “faster”, “firmer”, “push harder”) or attract the robot.
- Values between 0.0 and 1.0, always represented as a fraction,

mean the person wants that quantity to decrease (e.g., “slower”,
“gentler”, “less force”) or repel the robot. These values should be
represented as a fraction with a numerator of 1 (e.g., 1/2.0).

- 1.0 means no change.
- ‘stop: true’ means the user has requested that the robot imme-
diately stop moving.
- ‘clarification: true’ means the robot requires a follow-up
clarification.
For the attract, velocity, and force fields, if the request’s language
implies gradation (e.g., “just a bit faster” or “way too rough”), adjust
the magnitude accordingly:

- Default change in intensity is a multiplier of 2.0 (double) for in-
creasing change or 1/2.0 (half) for decreasing change.
- The max increase should be around 3.0, and max decrease around
1/3.0.
- Infer how strong or subtle the change is from modifiers like “a
little”, “slightly”, “a lot”, “way too”, “much more”, etc. and choose
an appropriate multiplier based on this reasoning knowing that
the default is to double of half. Use your own judgment to map
qualitative descriptions into meaningful quantitative adjustments.
The following is a list of all detected body landmarks: left wrist,
right wrist, left elbow, right elbow, left shoulder, right shoulder,
mouth

Adjustments should be categorized into one of three types:
1. Body Landmarks: When a request references a specific body
landmark, update only its corresponding entry or entires included
within that body landmark (e.g. “foot” and “knee” for “leg”). Body
landmark entries also include an “attract” field to reflect move-
ment preferences, where:

- attract > 1.0: move closer to the body landmark (e.g., “stay closer
to my left side”)
- attract < 1.0: move farther away (repel) (e.g., “stay away from

my knee”)
- attract = 1.0: no change.

2. Global: When a request affects the overall trajectory (e.g. “go
faster”, “use less pressure”, “finish this task slower”).
3. Local Waypoints: When a request targets a specific section of the
trajectory without mentioning a landmark (e.g., “go slower on the
way toward me”).
Rules for applying changes:
- Body landmark references: Only modify the landmark entry. As-
sume that the body landmarks listed in the given YAML are the
only relevant entries.
- Local vs. Global: Default to global unless the request clearly refers
to a specific part of the trajectory.
- Multiple changes: Multiple values can be modified by one request,
but do not apply both local and global changes for the same quan-
tity unless the request clearly calls for both.
- Stop parameter: only set ’stop’ to true if the user explicitly says
“stop,” and treat phrases like “stop here” as positional adjustments
rather than a global stop.
- Recognition errors: The utterance was transcribed by a speech-
to-text service, so if the utterance seems incomplete, vague, or
misrecognized within this context, make a best-effort guess based
on nearby words and the current trajectory to resolve any recogni-
tion errors.
- Irrelevant utterances: If the utterance is still irrelevant after resolv-
ing recognition errors, then ignore it if it is unlikely to be directed at
you or that do not clearly include a directive about how the robot’s
position, velocity, or force (e.g., “I’m sore”, “I’m happy today”, and
“I feel fast right now”).
- Consider the trajectory stage based on direction:

- Waypoints that are not near a body landmark but come before
waypoints that are represent the robot moving toward the person
for interaction.
- Waypoints in contact with or near a body landmark indicate

interaction.
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- Waypoints that are no longer near a body landmark but come
after waypoints that were represent the robot moving away from
the person following interaction.
- Unclear utterances: If the utterance is unclear (“This doesn’t feel
good”) and does not specify a target parameter (force, velocity, at-
tract, stop) or magnitude/scope of change, do not apply a change
and instead output a short and open-ended clarifying question.
Do not hint at possible parameters (speed, position, force, stop) or
suggest specific adjustments in your question unless the utterance
clearly specifies it. If a landmark is mentioned in the utterance, then
include it in your question.
- Always set the field ‘clarification: true’ if the user’s utter-
ance was unclear and requires the follow-up clarification prompt.
Otherwise set ‘clarification: false’.
- References to previous utterances: The user may make requests
that refer to previous changes (e.g., “Actually, a little more”, “Forget
what I just said”, etc.). In these cases, user the prior utterance(s) to
interpret the intent:
- If the utterance lacks a clear target but refers to the last mod-

ified quantity/location (“a little more”, “reduce it slightly”), apply
the change to that same parameter. This should essentially amplify
or deamplify the previous change. Infer how strong or subtle the
multiplier should be with respect to the previous value.

- Undo: If the utterance implies an undo of the previous change,
revert to the value before the last change by applying the reciprocal
multiplier.
- “Up” and “down” position reasoning: The user may describe ad-
justments using directional terms such as “up”, “down”, “higher”,
“lower”, etc. In these cases:

1. Anchor point: Identify the current body landmark from the
YAML block listing the nearest landmark to each waypoint.

2. Target search: Reference the list of detected landmarks to select
the target landmark:

- Relative ordering rule:
- For limbs: move stepwise along the natural distal-to-proximal

order for “up” and the reverse for “down” movement (e.g., hands to
wrist to elbow to shoulder, foot to ankle to knee).

- For torso/head: move from lower to upper for “up” and
the reverse for “down” movement.

- The target should be the immediate anatomical landmark
above or below the anchor, depending on the utterance.
3. Output the target landmark and update the changes accord-

ingly. Unless the user specifies otherwise, treat relative position
changes as attraction changes.
Example 1:
- History:

Previous Utterance: “Go further from my mouth.”
Previous Response:

mouth:
attract: 1/2.0

- Current utterance: “Undo that.”
- Output:

mouth:
attract: 2.0

I'm coming closer to your mouth to undo the

previous change.

Example 2:
- History:

Previous Utterance: “Apply less force around my knee.”
Previous Response:

[left/right] knee:
force: 1/2.0

- Current utterance: “Less.”
- Output:

[left/right] knee:
force: 1/2.0

I'm applying even less pressure to your knee.

The following is the given YAML block:
[Trajectory represented in YAML]

The following is the user’s utterance:
[Detected user utterance]

The following is the history of previous utterances and responses,
if any:
[Conversation history]

Output your response in the form of the given YAML block with
any necessary adjustment changes based on the person’s utter-
ance. Only include waypoints and fields that changed in the re-
sponse YAML (so nothing with a value of 1.0). If nothing changes,
output nothing. Make sure the output is wrapped in yaml, with
yaml <your yaml block>. After outputting the YAML, also output
a very concise, natural-sounding, single sentence that confirms the
most significant change being made to the robot’s trajectory (e.g.,
“I’m decreasing the pressure by half.”). Only include this sentence if
a change is made. Do not explain or justify it.

A.2 Dynamic Content
There are three sections in the prompt to be filled in dynamically
based on the inputs. First of all, “Trajectory represented in YAML”
refers to the YAML representation of the input trajectory, and below
we give one example of a full trajectory for the bathing task:
waypoint 1:

nearest landmark: none
waypoint 2:

nearest landmark: none
waypoint 3:

nearest landmark: left wrist
waypoint 4:

nearest landmark: left elbow
waypoint 5:

nearest landmark: none
waypoint 6:

nearest landmark: none
waypoint 7:

nearest landmark: left wrist
waypoint 8:

nearest landmark: left elbow
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waypoint 9:
nearest landmark: none

waypoint 10:
nearest landmark: none

waypoint 11:
nearest landmark: left wrist

waypoint 12:
nearest landmark: left elbow

waypoint 13:
nearest landmark: none

waypoint 14:
nearest landmark: none

waypoint 15:
nearest landmark: left wrist

waypoint 16:
nearest landmark: left elbow

waypoint 17:
nearest landmark: none

waypoint 18:
nearest landmark: none

waypoint 19:
nearest landmark: none

Next, “Detected user utterance” refers to the user utterance
picked up from the speech-to-text service, in plain string with-
out any formatting. This can be any of the examples shown in
Figure 3 in the main text.

Finally, “Conversation history” refers to the most recent user
utterance and YAML response from the LLM, formatted in the same
style as the two examples included in the prompt itself. If there is
no previous user response, the content here is simply left empty.

B Additional Efficacy Results

0.0 0.2 0.4 0.6 0.8 1.0
Task progress (0-1)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 m
od

ifi
ca

tio
ns

 r
em

ai
ni

ng

Task
Scratching
Feeding
Bathing

Figure 8: Empirical complementary cumulative distribution
function (CCDF) showing the ratio of remaining modifica-
tions as a function of the progress of each task, from all
trials with our method or unidirectional communication.
Task progress is based on time, normalized to a 0–1 scale.

Figure 8 shows the empirical complementary cumulative distri-
bution function (CCDF), which models the ratio of modifications
that has not been made as a function of task progress. This is com-
puted from the timestamp of utterances for each trial involving

either our method or the unidirectional communication ablation,
only counting utterances directly corresponding to the goal motion
aspect of each task (position for scratching, velocity for feeding,
and force for bathing). The dashed diagonal line represents making
modifications at a constant rate throughout task progression.

We see a common trend in all tasks where the CCDF starts above
the diagonal at the beginning, crosses the diagonal, and then remain
below the diagonal. This indicates that the users tend to observe
the robot’s behavior at the start, then make frequent modifications
to reach the task objective around a task progress of 15%–30%, and
lastly finish with less frequent modifications for small adjustments.
Specifically for scratching and bathing tasks, participants typically
make over 80% of their modifications before the task progression
reaches 65%. For the feeding task, since the participants tend to
increase the velocity throughout the task, trials would finish quickly
after the velocity reaches a degree that the participants are satisfied
with; hence we see a sharp drop in the CCDF only close to the end
of the task progress (around 80%). This tendency to make more
adjustment earlier in the task progression supports the effectiveness
of our trajectory modifications.
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